155 research outputs found

    Newton\u27s Idea of God as Found in the Different Editions of his Principia.

    Get PDF

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure

    The Mass of a Spin Vortex in a Bose-Einstein Condensate

    Full text link
    In contrast to charge vortices in a superfluid, spin vortices in a ferromagnetic condensate move inertially (if the condensate has zero magnetization along an axis). The mass of spin vortices depends on the spin-dependent interactions, and can be measured as a part of experiments on how spin vortices orbit one another. For Rb87 in a 1 micron thick trap m_v is about 10^-21 kg.Comment: 5 pages, 3 figures; 2nd version has added referenc

    Limits of the energy-momentum tensor in general relativity

    Get PDF
    A limiting diagram for the Segre classification of the energy-momentum tensor is obtained and discussed in connection with a Penrose specialization diagram for the Segre types. A generalization of the coordinate-free approach to limits of Paiva et al. to include non-vacuum space-times is made. Geroch's work on limits of space-times is also extended. The same argument also justifies part of the procedure for classification of a given spacetime using Cartan scalars.Comment: LaTeX, 21 page

    How Ordinary Elimination Became Gaussian Elimination

    Get PDF
    Newton, in notes that he would rather not have seen published, described a process for solving simultaneous equations that later authors applied specifically to linear equations. This method that Euler did not recommend, that Legendre called "ordinary," and that Gauss called "common" - is now named after Gauss: "Gaussian" elimination. Gauss's name became associated with elimination through the adoption, by professional computers, of a specialized notation that Gauss devised for his own least squares calculations. The notation allowed elimination to be viewed as a sequence of arithmetic operations that were repeatedly optimized for hand computing and eventually were described by matrices.Comment: 56 pages, 21 figures, 1 tabl

    Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond

    Full text link
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley's criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley's criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz's infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but rather pure fictions, like imaginaries, which are not eliminable by some syncategorematic paraphrase. We argue that Leibniz's defense of infinitesimals is more firmly grounded than Berkeley's criticism thereof. We show, moreover, that Leibniz's system for differential calculus was free of logical fallacies. Our argument strengthens the conception of modern infinitesimals as a development of Leibniz's strategy of relating inassignable to assignable quantities by means of his transcendental law of homogeneity.Comment: 69 pages, 3 figure

    From Analogical Proportion to Logical Proportions

    Get PDF
    International audienceGiven a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( a∧b and a¯∧b¯), or dissimilarity indicators ( a∧b¯ and a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations (a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions

    Physically Similar Systems - A History of the Concept

    Get PDF
    PreprintThe concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering (Froude, Bertrand, Reech), theoretical physics (van der Waals, Onnes, Lorentz, Maxwell, Boltzmann) and theoretical and experimental hydrodynamics (Stokes, Helmholtz, Reynolds, Prandtl, Rayleigh). In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century mathematics and mechanics: equations, functions and dimensional analysis. The terminology physically similar systems was proposed for this new characterization of similar systems by the physicist Edgar Buckingham. Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then. The concept is very powerful in studying physical phenomena both theoretically and experimentally. As it is not currently part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it ought to be
    • 

    corecore